Biostatistics I: Hypothesis testing

Categorical data: Proportion tests

Eleni-Rosalina Andrinopoulou

Department of Biostatistics, Erasmus Medical Center

e.andrinopoulou@erasmusmc.nl

♥@erandrinopoulou

- z-test for proportions
- Bionomial test
- ► Examples

Assumptions

- > The observations are independent of one another
- The sample size is large enough to use the normal approximation N(np, np(1 - p))
 - np > 10 and n(1 p) > 10, where n is the number of observations and p the proportion

Is the probability of being diagnosed with asthma now different than it was 50 years ago?

Hypothesis

 $H_{O}: \pi = \pi_{O}$ $H_{1}: \pi \neq \pi_{O}$

One sample *z*-test for proportions: Theory

Hypothesis

```
If one-tailed
Is the probability of being diagnosed with asthma now higher
than it was 50 years ago?
H_0: \pi = \pi_0
H_1: \pi > \pi_0
```

or

Is the probability of being diagnosed with asthma now lower than it was 50 years ago? $H_0: \pi = \pi_0$ $H_1: \pi < \pi_0$

One sample *z*-test for proportions: Theory

Test statistic

For large sample sizes, the distribution of the test statistic is approximately normal

$$Z = \frac{p - \pi_0}{\sqrt{\frac{\pi_0(1 - \pi_0)}{n}}}$$

- Sample proportion: *p*
- Population proportion: π_0
- Number of subjects: *n*

If continuity correction is applied: $z = \frac{p - \pi_0 + c}{\sqrt{\frac{\pi_0(1 - \pi_0)}{n}}}$,

where

•
$$c = -\frac{1}{2n}$$
 if $p > \pi_0$
• $c = \frac{1}{2n}$ if $p < \pi_0$
• $c = 0$ if $|p - \pi_0| < \frac{1}{2n}$

One sample *z*-test for proportions: Theory

Sampling distribution

- z-distribution
- Critical values and p-value

Type I error

• Normally α = 0.05

Draw conclusions

Compare test statistic (z) with the critical values_{α/2} or the p-value with α

If **one-tailed**: Compare test statistic with the critical value $_{\alpha}$

Is the probability of being diagnosed with asthma now different than it was 50 years ago?

Hypothesis

 $H_{O}: \pi = \pi_{O}$ $H_{1}: \pi \neq \pi_{O}$

Hypothesis

 $H_0: \pi = \pi_0$ $H_1: \pi \neq \pi_0$

Collect and visualize data

Х	Freq
No	47
Yes	53

50 years ago we had π_0 = 0.6

Test statistic

(with no continuity correction):

$$Z = \frac{p - \pi_0}{\sqrt{\frac{\pi_0(1 - \pi_0)}{p}}} = \frac{0.53 - 0.6}{\sqrt{\frac{0.6(1 - 0.6)}{100}}} = -1.43$$

Type I error $\alpha = 0.05$

Critical values

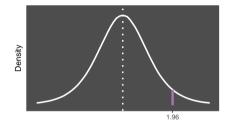
Using R we get the critical values from the z-distribution: critical value_{$\alpha/2$} = critical value_{0.05/2}

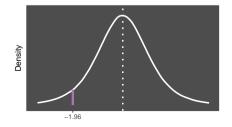
qnorm(p = 0.05/2, lower.tail = FALSE)

```
[1] 1.959964
-critical value<sub>\alpha/2</sub> = -critical value<sub>0.05/2</sub>
```

qnorm(p = 0.05/2, lower.tail = TRUE)

[1] -1.959964





Critical values

```
If one-tailed
```

```
critical value<sub>\alpha</sub>:
gnorm(p = 0.05, lower.tail = FALSE)
```

```
or
```

```
-critical value<sub>\alpha</sub>:
qnorm(p = 0.05, lower.tail = TRUE)
```

Draw conclusions

We reject the H_0 if:

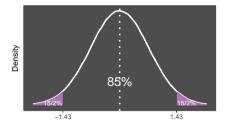
► $z > \text{critical value}_{\alpha/2}$ or $z < - \text{critical value}_{\alpha/2}$

We have -1.43 > -1.96 \Rightarrow we do not reject the H_0

Using \mathbb{R} we obtain the p-value from the *z*-distribution:

2 * pnorm(q = -1.43, lower.tail = TRUE)

[1] 0.152717



Is the probability of being diagnosed with asthma in the Netherlands different than in Belgium?

Hypothesis

 $H_0: \pi_1 = \pi_2$ $H_1: \pi_1 \neq \pi_2$

Test statistic

For large sample sizes, the distribution of the test statistic is approximately normal.

Pooled version:

$$z = \frac{(p_1 - p_2) - 0}{\sqrt{p(1 - p)\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

Unpooled version:

$$z = \frac{(p_1 - p_2) - 0}{\sqrt{\frac{p_1(1 - p_1)}{n_1} + \frac{p_2(1 - p_2)}{n_2}}}$$

- Sample proportion of group 1: p1
- ► Sample proportion of group 2: p₂
- ▶ Number of subjects in group 1: *n*₁
- Number of subjects in group 2: n₂
- Total proportion: $p = \frac{n_1 p_1 + n_2 p_2}{n_1 + n_2}$

Test statistic

If continuity correction is applied:

Pooled version:

$$z = \frac{(p_1 - p_2) + \frac{F}{2} \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}{\sqrt{p(1 - p) \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

Unpooled version:

$$z = \frac{(p_1 - p_2) + \frac{F}{2} \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}{\sqrt{\frac{p_1(1 - p_1)}{n_1} + \frac{p_2(1 - p_2)}{n_2}}}$$

where

Two sample *z*-test for proportions: Theory

Sampling distribution

- z-distribution
- Critical values and p-value

Type I error

• Normally α = 0.05

Draw conclusions

• Compare test statistic (z) with the critical values or the p-value with α

Is the probability of being diagnosed with asthma in the Netherlands different than in Belgium?

Hypothesis

 $H_0: \pi_1 = \pi_2$ $H_1: \pi_1 \neq \pi_2$

Collect and visualize data

Table 1: the Netherlands

xl	Freq
No	47
Yes	53

Test statistic

(with no continuity correction and pooled version):

$$p = \frac{n_1 p_1 + n_2 p_2}{n_1 + n_2} = \frac{100\ 0.53 + 100\ 0.38}{100 + 100} = 0.46$$
$$z = \frac{(p_1 - p_2) - 0}{\sqrt{p(1 - p)\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} = \frac{0.53 - 0.38}{\sqrt{0.46(1 - 0.46)\left(\frac{1}{100} + \frac{1}{100}\right)}} = 2.13$$

Table 2: Belgium

x2	Freq
No	62
Yes	38

Type I error $\alpha = 0.05$

Critical values

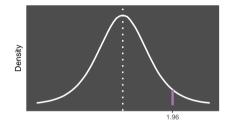
Using R we get the critical values from the z-distribution: critical value_{$\alpha/2$} = critical value_{0.05/2}

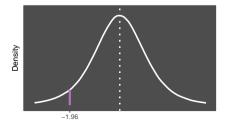
qnorm(p = 0.05/2, lower.tail = FALSE)

```
[1] 1.959964
-critical value<sub>\alpha/2</sub> = -critical value<sub>0.05/2</sub>
```

qnorm(p = 0.05/2, lower.tail = TRUE)

[1] -1.959964





Draw conclusions

We reject the H_0 if:

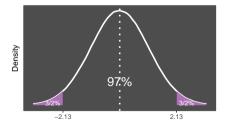
► $z > \text{critical value}_{\alpha/2}$ or $z < - \text{critical value}_{\alpha/2}$

We have 2.13 > 1.96 \Rightarrow we reject the H_0

Using R we obtain the p-value from the *z*-distribution:

2 * pnorm(q = 2.13, lower.tail = FALSE)

[1] 0.03317161



Assumptions

Independent observations

Notes..

The binomial test is an exact test

Is the probability of being diagnosed with asthma now different than it was 50 years ago?

Hypothesis

 $H_{0}: \pi = \pi_{0}$ $H_{1}: \pi \neq \pi_{0}$

Bionomial test: Theory

If n is the sample size and k the successes: $Pr(X = k) = \binom{n}{k}p^k(1-p)^{n-k}$, where $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ and ! indicates a factorial

- For any possible outcome of the binomial we obtain the corresponding probability
- We find the p-value by considering the probability of seeing an outcome as, or more, extreme
 - For a one-tailed test, $H_1: \pi < \pi_0$ $p - value = \Pr(X = 0) + \dots + \Pr(X = k) = \sum_{i=0}^k \Pr(X = i) = \sum_{i=0}^k \binom{n}{i} p^i (1 - p)^{n-i}$
 - Calculating a p-value for a two-tailed test is more complicated, since a binomial distribution is not symmetric if π₀ ≠ 0.5 ⇒ we cannot double the p-value from the one-tailed test

Type I error

• Normally α = 0.05

Bionomial test: Application

Scenario Is the probability of being diagnosed with asthma now lower than it was 50 years ago?

Hypothesis

 $H_0: \pi = \pi_0$ $H_1: \pi < \pi_0$

Collect and visualize data

- ▶ *n* = 10
- ▶ *k* = 3
- ▶ *p* = 0.3
- $\pi_0 = 0.4$ the probability of being diagnosed with asthma 50 years ago

P-value *Pr*(*X* <= 3)

Using R we get the p-value: pbinom(q = 3, size = 10, prob = 0.4)

[1] 0.3822806

Draw conclusions

We do not reject the H_0

Bionomial test: Application

Scenario Is the probability of being diagnosed with asthma now higher than it was 50 years ago?

Hypothesis

 $H_{0}: \pi = \pi_{0}$ $H_{1}: \pi > \pi_{0}$

Collect and visualize data

- ▶ *n* = 10
- ▶ *k* = 6
- ▶ *p* = 0.6
- $\pi_0 = 0.4$ the probability of being diagnosed with asthma 50 years ago

P-value Pr(X >= 6) = 1-Pr(X < 6) = 1-Pr(X <= 5)

[1] 0.1662386

Draw conclusions

We do not reject the H_0